65-46-3Relevant articles and documents
Meteorite-catalyzed intermoleculartrans-glycosylation produces nucleosides under proton beam irradiation
Bizzarri, Bruno Mattia,Fanelli, Angelica,Kapralov, Michail,Krasavin, Eugene,Saladino, Raffaele
, p. 19258 - 19264 (2021/06/03)
Di-glycosylated adenines act as glycosyl donors in the intermoleculartrans-glycosylation of pyrimidine nucleobases under proton beam irradiation conditions. Formamide and chondrite meteorite NWA 1465 increased the yield and the selectivity of the reaction
Conversion of: N- acyl amidines to amidoximes: A convenient synthetic approach to molnupiravir (EIDD-2801) from ribose
Ahmed, Ajaz,Ahmed, Qazi Naveed,Mukherjee, Debaraj
, p. 36143 - 36147 (2021/12/04)
An efficient method is described for the preparation of molnupiravir (EIDD-2801) an antiviral agent via regioselective conversion of an N-acyl-nucleoside intermediate, generated through stereo and regioselective glycosylation of protected ribose and N4-acetyl cytosine, to an amidoxime. This method avoids use of expensive starting materials, enzymes, complex reagents, and cumbersome purification procedures.
DIVERSE AND FLEXIBLE CHEMICAL MODIFICATION OF NUCLEIC ACIDS
-
Paragraph 0119-0123; 0131, (2020/05/12)
The present invention provides a method for chemically modifying a nucleic acid molecule using sulfinate reagents to increase stability in vitro and in vivo. Screening methods for nucleobase modifications that reduce cleavage of a nucleic acid molecule by a nuclease are also provided.
Identification of Flavin Mononucleotide as a Cell-Active Artificial N6-Methyladenosine RNA Demethylase
Xie, Li-Jun,Yang, Xiao-Ti,Wang, Rui-Li,Cheng, Hou-Ping,Li, Zhi-Yan,Liu, Li,Mao, Lanqun,Wang, Ming,Cheng, Liang
supporting information, p. 5028 - 5032 (2019/03/17)
N6-Methyladenosine (m6A) represents a common and highly dynamic modification in eukaryotic RNA that affects various cellular pathways. Natural dioxygenases such as FTO and ALKBH5 are enzymes that demethylate m6A residues in mRNA. Herein, the first identification of a small-molecule modulator that functions as an artificial m6A demethylase is reported. Flavin mononucleotide (FMN), the metabolite produced by riboflavin kinase, mediates substantial photochemical demethylation of m6A residues of RNA in live cells. This study provides a new perspective to the understanding of demethylation of m6A residues in mRNA and sheds light on the development of powerful small molecules as RNA demethylases and new probes for use in RNA biology.
Dehalogenation of Halogenated Nucleobases and Nucleosides by Organoselenium Compounds
Mondal, Santanu,Mugesh, Govindasamy
, p. 1773 - 1780 (2019/01/10)
Halogenated nucleosides, such as 5-iodo-2′-deoxyuridine and 5-iodo-2′-deoxycytidine, are incorporated into the DNA of replicating cells to facilitate DNA single-strand breaks and intra- or interstrand crosslinks upon UV irradiation. In this work, it is shown that the naphthyl-based organoselenium compounds can mediate the dehalogenation of halogenated pyrimidine-based nucleosides, such as 5-X-2′-deoxyuridine and 5-X-2′-deoxycytidine (X=Br or I). The rate of deiodination was found to be significantly higher than that of the debromination for both nucleosides. Furthermore, the deiodination of iodo-cytidines was found to be faster than that of iodo-uridines. The initial rates of the deiodinations of 5-iodocytosine and 5-iodouracil indicated that the nature of the sugar moiety influences the kinetics of the deiodination. For both the nucleobases and nucleosides, the deiodination and debromination reactions follow a halogen-bond-mediated and addition/elimination pathway, respectively.
SOLID-PHASE PURIFICATION OF SYNTHETIC NUCLEIC ACID SEQUENCES
-
Page/Page column 41; 45, (2018/09/25)
The invention provides a compound of the formula (I), and a capture support of the formula (9), wherein R1, R2, R3, R6, A, B, D, E, J, K, Q, W, and Z are as defined herein. The invention also provides a method of purifying an oligonucleotide or an oligonucleotide analog composed of "b" nucleotides from a mixture comprising the oligonucleotide or oligonucleotide analog and at least one oligonucleotide or oligonucleotide analog composed of "a" nucleotides, wherein b ≠ a, comprising use of the compound and the capture support.
Selective aqueous acetylation controls the photoanomerization of α-cytidine-5′-phosphate
Fernández-García, Christian,Grefenstette, Natalie M.,Powner, Matthew W.
supporting information, p. 4850 - 4853 (2018/05/23)
Nucleic acids are central to information transfer and replication in living systems, providing the molecular foundations of Darwinian evolution. Here we report that prebiotic acetylation of the non-natural, but prebiotically plausible, ribonucleotide α-cy
Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets
Nam, Inho,Nam, Hong Gil,Zare, Richard N.
, p. 36 - 40 (2018/01/12)
Aqueous microdroplets (a nucleobase (uracil, adenine, cytosine, or hypoxanthine) are electrosprayed from a capillary at +5 kV into a mass spectrometer at room temperature and 1 atm pressure with 3 mM divalent magnesium ion (Mg2+) as a catalyst. Mass spectra show the formation of ribonucleosides that comprise a four-letter alphabet of RNA with a yield of 2.5% of uridine (U), 2.5% of adenosine (A), 0.7% of cytidine (C), and 1.7% of inosine (I) during the flight time of ~50 μs. In the case of uridine, no catalyst is required. An aqueous solution containing guanine cannot be generated under the same conditions given the extreme insolubility of guanine in water. However, inosine can base pair with cytidine and thus substitute for guanosine. Thus, a full set of ribonucleosides to generate the purine–pyrimidine base pairs A-U and I-C are spontaneously generated in aqueous microdroplets under similar mild conditions.
Vinyluridine as a Versatile Chemoselective Handle for the Post-transcriptional Chemical Functionalization of RNA
George, Jerrin Thomas,Srivatsan, Seergazhi G.
, p. 1529 - 1536 (2017/05/29)
The development of modular and efficient methods to functionalize RNA with biophysical probes is very important in advancing the understanding of the structural and functional relevance of RNA in various cellular events. Herein, we demonstrate a two-step bioorthogonal chemical functionalization approach for the conjugation of multiple probes onto RNA transcripts using a 5-vinyl-modified uridine nucleotide analog (VUTP). VUTP, containing a structurally noninvasive and versatile chemoselective handle, was efficiently incorporated into RNA transcripts by in vitro transcription reactions. Furthermore, we show for the first time the use of a palladium-mediated oxidative Heck reaction in functionalizing RNA with fluorogenic probes by reacting vinyl-labeled RNA transcripts with appropriate boronic acid substrates. The vinyl label also permitted the post-transcriptional functionalization of RNA by a reagent-free inverse electron demand Diels-Alder (IEDDA) reaction in the presence of tetrazine substrates. Collectively, our results demonstrate that the incorporation of VUTP provides newer possibilities for the modular functionalization of RNA with variety of reporters.
Synthesis of Nucleosides through Direct Glycosylation of Nucleobases with 5-O-Monoprotected or 5-Modified Ribose: Improved Protocol, Scope, and Mechanism
Downey, A. Michael,Pohl, Radek,Roithová, Jana,Hocek, Michal
supporting information, p. 3910 - 3917 (2017/03/27)
Simplifying access to synthetic nucleosides is of interest due to their widespread use as biochemical or anticancer and antiviral agents. Herein, a direct stereoselective method to access an expansive range of both natural and synthetic nucleosides up to a gram scale, through direct glycosylation of nucleobases with 5-O-tritylribose and other C5-modified ribose derivatives, is discussed in detail. The reaction proceeds through nucleophilic epoxide ring opening of an in situ formed 1,2-anhydrosugar (termed “anhydrose”) under modified Mitsunobu reaction conditions. The scope of the reaction in the synthesis of diverse nucleosides and other 1-substituted riboside derivatives is described. In addition, a mechanistic insight into the formation of this key glycosyl donor intermediate is provided.