589-18-4Relevant articles and documents
Aerobic oxidation of alcohols in visible light on Pd-grafted Ti cluster
Verma, Sanny,Nasir Baig,Nadagouda, Mallikarjuna N.,Varma, Rajender S.
, p. 5577 - 5580 (2017)
The titanium cluster with the reduced band gap has been synthesized having the palladium nanoparticles over the surface, which not only binds to the atmospheric oxygen but also catalyzes the oxidation of alcohols under visible light.
An efficient method for the cleavage of tert-butyldiphenylsilyl ethers catalyzed by 1,3-dibromo-5,5-dimethylhydantoin
Han, Zong
, p. 51 - 62 (2022/02/14)
An efficient method for the deprotection of tert-butyldiphenylsilyl (TBDPS) ethers using 1,3-dibromo-5,5-dimethylhydantoin (DBH) as catalyst and dimethyl sulfoxide (DMSO) as solvent has been established. This method is useful for many kinds of compounds,
Efficient Solvent-Free Hydrosilylation of Aldehydes and Ketones Catalyzed by Fe2(CO)9/C6H4-o-(NCH2PPh2)2BH
Fang, Fei,Chang, Jiarui,Zhang, Jie,Chen, Xuenian
, p. 3509 - 3515 (2021/03/16)
An efficient solvent-free catalyst system for hydrosilylation of aldehydes and ketones was developed based on iron pre-catalyst Fe2(CO)9/C6H4-o-(NCH2PPh2)2BH. The reactions were tolerant of many functional groups and the corresponding alcohols were isolated in good to excellent yields following basic hydrolysis of the reaction products. The reaction is likely catalyzed by an in situ generated pincer ligated iron hydride complex. Graphic Abstract: [Figure not available: see fulltext.]
Hydroboration Reaction and Mechanism of Carboxylic Acids using NaNH2(BH3)2, a Hydroboration Reagent with Reducing Capability between NaBH4and LiAlH4
Wang, Jin,Ju, Ming-Yue,Wang, Xinghua,Ma, Yan-Na,Wei, Donghui,Chen, Xuenian
, p. 5305 - 5316 (2021/04/12)
Hydroboration reactions of carboxylic acids using sodium aminodiboranate (NaNH2[BH3]2, NaADBH) to form primary alcohols were systematically investigated, and the reduction mechanism was elucidated experimentally and computationally. The transfer of hydride ions from B atoms to C atoms, the key step in the mechanism, was theoretically illustrated and supported by experimental results. The intermediates of NH2B2H5, PhCH= CHCOOBH2NH2BH3-, PhCH= CHCH2OBO, and the byproducts of BH4-, NH2BH2, and NH2BH3- were identified and characterized by 11B and 1H NMR. The reducing capacity of NaADBH was found between that of NaBH4 and LiAlH4. We have thus found that NaADBH is a promising reducing agent for hydroboration because of its stability and easy handling. These reactions exhibit excellent yields and good selectivity, therefore providing alternative synthetic approaches for the conversion of carboxylic acids to primary alcohols with a wide range of functional group tolerance.
Direct use of the solid waste from oxytetracycline fermentation broth to construct Hf-containing catalysts for Meerwein-Ponndorf-Verley reactions
Chen, Yuxin,Yao, Xuefeng,Wang, Xiaolu,Zhang, Xuefeng,Zhou, Huacong,He, Runxia,Liu, Quansheng
, p. 13970 - 13979 (2021/04/22)
The oxytetracycline fermentation broth residue (OFR) is an abundant solid waste in the fermentation industry, which is hazardous but tricky to treat. The resource utilization of the waste OFR is still challenging. In this study, a novel route of using OFR was proposed that OFR was used as the organic ligands to construct a new hafnium based catalyst (Hf-OFR) for Meerwein-Ponndorf-Verley (MPV) reactions of biomass-derived platforms. The acidic groups in OFR were used to coordinate with Hf4+, and the carbon skeleton structures in OFR were used to form the spatial network structures of the Hf-OFR catalyst. The results showed that the synthesized Hf-OFR catalyst could catalyze the MPV reduction of various carbonyl compounds under relatively mild reaction conditions, with high conversions and yields. Besides, the Hf-OFR catalyst could be recycled at least 5 times with excellent stability in activity and structures. The prepared Hf-OFR catalyst possesses the advantages of high efficiency, a simple preparation process, and low cost in ligands. The proposed strategy of constructing catalysts using OFR may provide new routes for both valuable utilization of the OFR solid waste in the fermentation industry and the construction of efficient catalysts for biomass conversion.
Iron-catalyzed chemoselective hydride transfer reactions
Coufourier, Sébastien,Ndiaye, Daouda,Gaillard, Quentin Gaignard,Bettoni, Léo,Joly, Nicolas,Mbaye, Mbaye Diagne,Poater, Albert,Gaillard, Sylvain,Renaud, Jean-Luc
supporting information, (2021/06/07)
A Diaminocyclopentadienone iron tricarbonyl complex has been applied in chemoselective hydrogen transfer reductions. This bifunctional iron complex demonstrated a broad applicability in mild conditions in various reactions, such as reduction of aldehydes over ketones, reductive alkylation of various functionalized amines with functionalized aldehydes and reduction of α,β-unsaturated ketones into the corresponding saturated ketones. A broad range of functionalized substrates has been isolated in excellent yields with this practical procedure.
Ambient-pressure highly active hydrogenation of ketones and aldehydes catalyzed by a metal-ligand bifunctional iridium catalyst under base-free conditions in water
Wang, Rongzhou,Yue, Yuancheng,Qi, Jipeng,Liu, Shiyuan,Song, Ao,Zhuo, Shuping,Xing, Ling-Bao
, p. 1 - 7 (2021/05/17)
A green, efficient, and high active catalytic system for the hydrogenation of ketones and aldehydes to produce corresponding alcohols under atmospheric-pressure H2 gas and ambient temperature conditions was developed by a water-soluble metal–ligand bifunctional catalyst [Cp*Ir(2,2′-bpyO)(OH)][Na] in water without addition of a base. The catalyst exhibited high activity for the hydrogenation of ketones and aldehydes. Furthermore, it was worth noting that many readily reducible or labile functional groups in the same molecule, such as cyan, nitro, and ester groups, remained unchanged. Interestingly, the unsaturated aldehydes can be also selectively hydrogenated to give corresponding unsaturated alcohols with remaining C=C bond in good yields. In addition, this reaction could be extended to gram levels and has a large potential of wide application in future industrial.
Application of bis(phosphinite) pincer nickel complexes to the catalytic hydrosilylation of aldehydes
Chang, Jiarui,Fang, Fei,Tu, Chenhao,Zhang, Jie,Ma, Nana,Chen, Xuenian
, (2020/10/27)
A series of bis(phosphinite) (POCOP) pincer ligated nickel complexes, [2,6-(tBu2PO)2C6H3]NiX (X = SH, 1; SCH2Ph, 2; SPh, 3; NCS, 4; N3, 5), were used to catalyse the hydrosilylation of aldehydes. It was found that both complexes 1 and 2 are active in catalysing the hydrosilylation of aldehydes with phenylsilane and complex 1 is comparatively more active. The expected alcohols were isolated in good to excellent yields after basic hydrolysis of the resultant hydrosilylation products. However, no reaction was observed when complex 3 or 4 or 5 was used as the catalyst. The results are consistent with complexes 1 and 2 serving as catalyst precursors, which generate the corresponding nickel hydride complex [2,6-(tBu2PO)2C6H3]NiH in situ, and the nickel hydride complex is the active species that catalyses this hydrosilylation process. The in situ generation of the nickel hydride species was supported by both experimental results and DFT calculation.
Synthesis, crystal and structural characterization, Hirshfeld surface analysis and DFT calculations of three symmetrical and asymmetrical phosphonium salts
Delaram, Behnaz,Gholizadeh, Mostafa,Makari, Faezeh,Nokhbeh, Seyed Reza,Salimi, Alireza
, (2021/07/01)
Three stable phosphonium salts of 1,4-butanediylebis(triphenylphosphonium) dibromide I, butane-4?bromo-1-(triphenylphosphonium) bromide II and 1,3-propanediylbis(triphenylphosphonium) tetrahydroborate III were synthesized and structurally characterized. Single crystal X-ray diffraction analysis, spectroscopic methods and thermal analysis methods were used for the characterization of titled compounds. Crystallographic data showed that compound I crystallized in the triclinic crystal system with Pī space group and compound II crystallized in the monoclinic crystal system with P21/c space group. The crystal packing structures of I and II were stabilized by various intermolecular interactions, especially of C–H···π contacts. The molecular Hirshfeld surface analysis and 2D fingerprint revealed that the C···H contacts have 24.3% and 18.4% contributions in the crystal packings of compounds I and II, respectively. In addition, the H···Br (28.5%) contact has a considerable contribution to the crystal architecture of compound II. Theoretical studies were performed by DFT method to investigate the structural properties of the titled compounds. The isotopic ratio of boron in tetrahydroborate anion of compound III calculated by 1H NMR spectroscopy. The isotopic ratio for 10B/11B was 19.099 / 80.900%. Reduction of some carbonyl compounds to corresponding alcohols was performed by compound III and the optimum conditions were determined.
Transfer hydrogenation of furfural catalyzed by multi-centers collaborative Ni-based catalyst and kinetic research
Kong, Deyu,Liu, Junhua,Mao, Weizhong,Miao, Shiwen,Wang, Fang,Yin, Bingqian
, (2021/06/15)
We propose a simple preparation route that converting biomass-derived furfural (FUR) to furfuryl alcohol (FOL) over a series of Ni-Mg-Al catalysts (NMA-n) with different molar ratios. Yield of FOL can reach 96.8 % over NMA-2 catalyst under the mild reacti