4481-30-5Relevant articles and documents
EFFECTS OF LIGANDS ON ION-PAIRING BEHAVIOR OF BENZYLIC LITHIUM COMPOUNDS
Fraenkel, Gideon,Geckle, Michael J.,Kaylo, Allan,Estes, Don W.
, p. 249 - 260 (1980)
The 1/1/ adduct of t-butyllithium and α-methylstyrene (II) has been generated in cyclopentane in the presence of a variety of ether and t-amine ligands as well as unsolvated, giving stable solutions in every case.NMR spectra of the solvated species are the same for all ligands but differ from that of the unsolvated compound.The results are consistent with a salt which contains a conjugated t-benzylic anion and exists as a loose ion-pair in the presence of ligands and as a tight ion-pair in cyclopentane alone.In contrast, benzyllithium behaves like a tight ion-pair in the presence of all ligands tried.Steric hindrance to tight ion-pairing at Cα of II is concluded to be responsible for the results observed.A covalently-bonded dilithium compound, 4,4-dimethyl-2-lithio-2-(p-lithio-phenyl)pentane has been generated.
D0Metal-Catalyzed Alkyl-Alkyl Cross-Coupling Enabled by a Redox-Active Ligand
Belli, Roman G.,Joannou, Matthew V.,Roberts, Courtney C.,Tafuri, Victoria C.
, p. 3094 - 3099 (2022/03/15)
Alkyl-alkyl cross-coupling through well-defined mechanisms that allow for controlled oxidative addition, prevent β-hydride elimination, and tolerate hindered electrophiles is still challenging. Described herein is a redox-active ligand-enabled alkyl-alkyl cross-coupling using a d0 metal. This tris(amido) ScIII complex as well as the oxidized variant have been thoroughly characterized (NMR, X-ray, EPR, CV, UV-vis, DFT). Insight into the likely radical nature of the mechanism is disclosed. Additionally, a substrate scope that includes functional groups incompatible with late-transition-metal catalysis and both coupling partners bearing β-hydrogens is reported.
Reductive activation and hydrofunctionalization of olefins by multiphoton tandem photoredox catalysis
Czyz, Milena L.,Taylor, Mitchell S.,Horngren, Tyra H.,Polyzos, Anastasios
, p. 5472 - 5480 (2021/06/01)
The conversion of olefin feedstocks to architecturally complex alkanes represents an important strategy in the expedient generation of valuable molecules for the chemical and life sciences. Synthetic approaches are reliant on the electrophilic activation of unactivated olefins, necessitating functionalization with nucleophiles. However, the reductive functionalization of unactivated and less activated olefins with electrophiles remains an ongoing challenge in synthetic chemistry. Here, we report the nucleophilic activation of inert styrenes through a photoinduced direct single electron reduction to the corresponding nucleophilic radical anion. Central to this approach is the multiphoton tandem photoredox cycle of the iridium photocatalyst [Ir(ppy)2(dtbbpy)] PF6, which triggers in situ formation of a high-energy photoreductant that selectively reduces styrene olefinic π bonds to radical anions without stoichiometric reductants or dissolving metals. This mild strategy enables the chemoselective reduction and hydrofunctionalization of styrenes to furnish valuable alkane and tertiary alcohol derivatives. Mechanistic studies support the formation of a styrene olefinic radical anion intermediate and a Birch-type reduction involving two sequential single electron transfers. Overall, this complementary mode of olefin activation achieves the hydrofunctionalization of less activated alkenes with electrophiles, adding value to abundant olefins as valuable building blocks in modern synthetic protocols.
Nickel-catalyzed reductive deoxygenation of diverse C-O bond-bearing functional groups
Cook, Adam,MacLean, Haydn,St. Onge, Piers,Newman, Stephen G.
, p. 13337 - 13347 (2021/11/20)
We report a catalytic method for the direct deoxygenation of various C-O bond-containing functional groups. Using a Ni(II) pre-catalyst and silane reducing agent, alcohols, epoxides, and ethers are reduced to the corresponding alkane. Unsaturated species including aldehydes and ketones are also deoxygenated via initial formation of an intermediate silylated alcohol. The reaction is chemoselective for C(sp3)-O bonds, leaving amines, anilines, aryl ethers, alkenes, and nitrogen-containing heterocycles untouched. Applications toward catalytic deuteration, benzyl ether deprotection, and the valorization of biomass-derived feedstocks demonstrate some of the practical aspects of this methodology.
Iridium-Catalyzed Alkene-Selective Transfer Hydrogenation with 1,4-Dioxane as Hydrogen Donor
Zhang, Deliang,Iwai, Tomohiro,Sawamura, Masaya
supporting information, p. 5867 - 5872 (2019/08/26)
The iridium-catalyzed transfer hydrogenation of alkenes using 1,4-dioxane as a hydrogen donor is described. The use of 1,2-bis(dicyclohexylphosphino)ethane (DCyPE), featuring bulky and highly electron-donating properties, led to high catalytic activity. A polystyrene-cross-linking bisphosphine PS-DPPBz produced a reusable heterogeneous catalyst. These homogeneous and heterogeneous protocols achieved chemoselective transfer hydrogenation of alkenes over other potentially reducible functional groups such as carbonyl, nitro, cyano, and imino groups in the same molecule.
Cobalt-Catalyzed Hydrogenations via Olefin Cobaltate and Hydride Intermediates
Sandl, Sebastian,Maier, Thomas M.,Van Leest, Nicolaas P.,Kr?ncke, Susanne,Chakraborty, Uttam,Demeshko, Serhiy,Koszinowski, Konrad,De Bruin, Bas,Meyer, Franc,Bodensteiner, Michael,Herrmann, Carmen,Wolf, Robert,Von Jacobi Wangelin, Axel
, p. 7596 - 7606 (2019/08/20)
Redox noninnocent ligands are a promising tool to moderate electron transfer processes within base-metal catalysts. This report introduces bis(imino)acenaphthene (BIAN) cobaltate complexes as hydrogenation catalysts. Sterically hindered trisubstituted alkenes, imines, and quinolines underwent clean hydrogenation under mild conditions (2-10 bar, 20-80 °C) by use of the stable catalyst precursor [(DippBIAN)CoBr2] and the cocatalyst LiEt3BH. Mechanistic studies support a homogeneous catalysis pathway involving alkene and hydrido cobaltates as active catalyst species. Furthermore, considerable reaction acceleration by alkali cations and Lewis acids was observed. The dinuclear hydridocobaltate anion with bridging hydride ligands was isolated and fully characterized.
STABILIZATION OF ACTIVE METAL CATALYSTS AT METAL-ORGANIC FRAMEWORK NODES FOR HIGHLY EFFICIENT ORGANIC TRANSFORMATIONS
-
Paragraph 0247; 0257, (2019/01/07)
Metal-organic framework (MOFs) compositions based on post?synthetic metalation of secondary building unit (SBU) terminal or bridging OH or OH2 groups with metal precursors or other post-synthetic manipulations are described. The MOFs provide a versatile family of recyclable and reusable single-site solid catalysts for catalyzing a variety of asymmetric organic transformations, including the regioselective boryiation and siiylation of benzyiic C—H bonds, the hydrogenation of aikenes, imines, carbonyls, nitroarenes, and heterocycles, hydroboration, hydrophosphination, and cyclization reactions. The solid catalysts can also be integrated into a flow reactor or a supercritical fluid reactor.
Olefin-Stabilized Cobalt Nanoparticles for C=C, C=O, and C=N Hydrogenations
Sandl, Sebastian,Schwarzhuber, Felix,P?llath, Simon,Zweck, Josef,Jacobi von Wangelin, Axel
supporting information, p. 3403 - 3407 (2018/02/13)
The development of cobalt catalysts that combine easy accessibility and high selectivity constitutes a promising approach to the replacement of noble-metal catalysts in hydrogenation reactions. This report introduces a user-friendly protocol that avoids complex ligands, hazardous reductants, special reaction conditions, and the formation of highly unstable pre-catalysts. Reduction of CoBr2 with LiEt3BH in the presence of alkenes led to the formation of hydrogenation catalysts that effected clean conversions of alkenes, carbonyls, imines, and heteroarenes at mild conditions (3 mol % cat., 2–10 bar H2, 20–80 °C). Poisoning studies and nanoparticle characterization by TEM, EDX, and DLS supported the notion of a heterotopic catalysis mechanism.
Cyclohexa-1,3-diene-based dihydrogen and hydrosilane surrogates in B(C6F5)3-catalysed transfer processes
Yuan, Weiming,Orecchia, Patrizio,Oestreich, Martin
supporting information, p. 10390 - 10393 (2017/09/25)
The cyclohexa-1,3-diene motif is introduced as an equally effective alternative to the cyclohexa-1,4-diene platform in B(C6F5)3-catalysed transfer processes. The transfer hydrogenation of alkenes is realised with α-terpinene and the related transfer hydrosilylation is achieved with 5-trimethylsilyl-substituted cyclohexa-1,3-diene. Both yields and substrate scope are comparable with the prior systems.
Alkene Hydrogenations by Soluble Iron Nanocluster Catalysts
Gieshoff, Tim N.,Chakraborty, Uttam,Villa, Matteo,Jacobi von Wangelin, Axel
supporting information, p. 3585 - 3589 (2017/03/21)
The replacement of noble metal technologies and the realization of new reactivities with earth-abundant metals is at the heart of sustainable synthesis. Alkene hydrogenations have so far been most effectively performed by noble metal catalysts. This study reports an iron-catalyzed hydrogenation protocol for tri- and tetra-substituted alkenes of unprecedented activity and scope under mild conditions (1–4 bar H2, 20 °C). Instructive snapshots at the interface of homogeneous and heterogeneous iron catalysis were recorded by the isolation of novel Fe nanocluster architectures that act as catalyst reservoirs and soluble seeds of particle growth.